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Abstract

This paper presents a comprehensive story of the development of simpler performance

models for distributed implementations of the Fast Fourier Transform in 3 Dimensions

(FFT3D). We start by providing an overview of several implementations and their perfor-

mance models. Then, we present arguments to support the use of a simple power function

instead of the full performance models proposed by other publications. We argue that our

model can be obtained for a particular problem size with minimal experimentation while

other models require significant tuning to determine their constants.

Our advocacy for simpler performance models is inspired by the difficulties found when

estimating the performance of FFT3D programs. Correctly estimating how well large-scale

programs (such as FFT3D) will work is one of the most challenging problems faced by

scientists. The significant effort devoted to this problem has resulted in the appearance of

numerous works on performance modeling.

The results produced by an exhaustive performance modeling study may predict the

performance of a program with a reasonably good accuracy. However, those studies may

become unusable because their aim for accuracy can make them so difficult and cumbersome

to use that direct experimentation with the program may be preferable, defeating their

original purpose.

We propose an alternative approach in this paper that does not require a full, accurate,

performance model. Our approach mitigates the problem of existing performance models,

each one of the parameters and constants in the model has to be carefully measured and

tuned, a process that is intrinsically harder than direct experimentation with the program

at hand.

Instead, we were able to simplify our approach by (1) building performance models that

target particular applications in their normal operating conditions and (2) using simpler

models that still produce good approximations for the particular case of a program’s normal

operating environment.

We have conducted experiments using the Bluefire Supercomputer at the National Cen-

ter for Atmospheric Research (NCAR), showing that our simplified model can predict the

performance of a particular implementation with a high degree of accuracy and very little

effort when the program is used in its intended operating range.

Finally, although our performance model does not cover extreme cases, we show that its

simple approximation under the normal operating conditions of FFT3D is able to provide

solid, useful approximations.

1 Introduction

The Fast Fourier Transform (FFT)[1] is an important tool in physics and engineering, and it is

relevant to numerous High Performance Computing (HPC) applications.

This paper addresses the issue of how to efficiently select an FFT algorithm for the particular

case of large-scale distributed scientific simulations. Examples of large-scale scientific applica-

tions that use FFT include Cloud Physics[2], Molecular Dynamics[3], calculation of Coulomb

Energies [4], Seismic Imaging [5] and Computational Geosciences [6]
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Understanding the performance of FFT in large scale systems is important because FFT

plays a significant role in many scientific programs. For example, the turbulent droplet collision

simulation developed by Wang et al[7] uses a pseudo-spectral method for the flow simulation

that requires multiple 3-Dimensional FFTs during each timestep of the computation. In fact,

profiling of the flow simulation alone reveals that the 3D FFT alone can take up to 90% of the

total execution time in the program.

Because the FFT is not the objective of the computation in many cases, but rather a tool

used to help it, it is of paramount importance to understand the effect of design choices on the

overall program. For example, there may be a certain overhead in the passing of arguments to

the FFT. The partitioning of the data may force the use of certain FFT strategies, or even the

physical location of the compute nodes may greatly affect the performance of particular FFT

strategies.

The necessity to understand the performance of FFT implementations and its relationship to

the program using it has prompted researchers to build performance models that aim to predict

the performance of particular implementations. These previous approaches [8, 9, 10, 11] have

resulted in very detailed performance models that include many factors such as computation

time, communication time, the presence of overlapping or pipelining, the location of the memory

and so on.

The biggest drawback to building a performance model is that correctly developing each

performance model requires significant effort: the algorithm must be considered, constants in

the model have to be measured, and the model may only work for certain architectures or

interconnects. The difficulties of building performance models are so great that when one is

correctly found it is published in a recognized venue (e.g. Dimitruk published his model in the

Parallel Computing Journal [8] and Ayala’s model[11] is currently under review in the same

journal).

Instead, we have looked at alternatives that would allow scientists to make decisions about

3-Dimensional FFT implementations without the burden of developing full performance models.

We have approached the problem by studying the nature of the 3D-FFT computation itself and

existing performance models for different 3D-FFT strategies to see if there is a simpler way to

efficiently select a particular 3D-FFT implementation over a set of alternatives.

We have sought to understand the performance of different 3D-FFT implementations on

distributed memory machines through preliminary experiments (Figure 1) conducted on the

Bluefire Supercomputer from the National Center for Atmospheric Research (NCAR).

Figure 1 shows the results of using two very different implementations of FFT3D on data

of the same size. The differences in performance between the two techniques shown are due to

differences in the implementation such as communication strategy and algorithm used.

Our experiments, which focus on large-scale systems, suggest an alternative approach to

analyze FFT3D implementations: The running time of a particular FFT3D implementation can

be approximated by a line in a logarithmic graph. This approximation corresponds to a power

function. The power-function approach has the advantage of being significantly easier to use
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Figure 1: Performance of two different FFT3D techniques. The relationship between time to

execute and the number of processors appears to follow a straight line in this logarithmic plot.

N3: Problem size P : Number of processors

Bw: Inter-process bandwidth kc: Average computation rate (FLOPS)

km: A constant associated with main memory

bandwidth

T : Predicted execution time

ks: A constant associated with the startup time for a message

Table 1: Parameter and constant definitions

and build while still allowing the estimation (albeit with reduced accuracy when communication

latency is high) of the performance of particular 3D-FFT implementations.

To test our hypothesis regarding the validity of our power-law approximation, we have

assembled several 3D-FFT implementations. A brief overview for each one of them is given

in Section 2, along with their performance models, when they are available. We develop our

prediction model in Section 3 and we conduct experiments to test the validity of our model in

Section 4. Finally, we provide some conclusions and future work in Sections 5 and 6.

2 Background on FFT3D Algorithms

Many techniques have been investigated and developed to perform a distributed 3-dimensional

FFT. For the purpose of this study, we focused on approaches that did not change the underlying

FFT algorithm but instead changed the decomposition of the data and the communication

patterns. The algorithms presented here leverage the principle that a 3-dimensional FFT can

be performed by executing a 1-dimensional FFT along each one of the three dimensions of the

data.

We will use the notation in Table 1 to aid us in our explanation of the FFT3D algorithms

and models.
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2.1 1D Domain Decomposition: “Slabs”

The first decomposition we studied is the 1D domain decomposition, as seen in Figure 2.

This decomposition is often referred to as a “slab” decomposition where each processor is

responsible for a single slab. In the case of Figure 2, each processor initially holds a slab of size

N ×N × (N/P ).

Because a slab must have a width of at least one element, the parallelism of 1D decomposition

implementations is limited to P ≤ N processors.

2.1.1 Dmitruk’s 1D Domain Decomposition

Dmitruk’s solution to the problem of the 3-Dimensional FFT [8] is to partition data in one of

the space dimensions.

Each of the P processors is responsible for a single slab. First, each processor performs

N/P 2D FFTs along the xy plane. Then, a transpose is performed such that the data in the z

direction is now saved in the y direction and vice versa. With this transposed data, the required

1D FFTs are performed. Finally, a second transpose may be performed to restore the data to

its original orientation, depending upon the needs of the application.

However, the essence of Dmitruk’s work is in his implementation of the transpose. There

are three methods that work on the principle of breaking the slab into “blocks”, moving the

blocks to the appropriate processors, and then locally rearranging the data. What differs is the

communication scheme used. The first method involves a cyclic strategy: Each processor sends

data to the next processor in the list while receiving data from the previous processor. This is

repeated until every processor has traversed the entire list of processors. The second strategy

is similar in that each processor sends to the processor that is currently receiving from via a

temporary pairing strategy. This is repeated in parallel until every processor has paired with

every other processor. Finally, MPI collectives in the form of the “all-to-all” operator were used

for the third method. Of these three methods, the second method’s pairwise strategy gave the

best performance under Dmitruk’s tests.
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Figure 2: 1D domain (slab) decomposition for FFT 3D
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Figure 3: 2D domain (pencil) decomposition for FFT 3D

Equation 1 shows the full performance model presented by Dmitruk’s paper[8].

T =
2N3

BwP
+

15

2 log(2)

N3 log(N)

kcP
+

3N3

kmP
+ 2ksP (1)

2.2 2D Domain Decomposition: “Pencils”

A 2D domain decomposition strategy is a natural extension to the 1D idea. The 2D domain

decomposition can be done along X axis, referred to as X-pencil, Y axis (Y-pencil) or Z axis

(Z-pencil).

Assuming that the P processors are arranged in a grid so that P = Py ×Pz, Figure 2 shows

a case where each pencil is of size N × (N/Py) × (N/Pz) and each processor is responsible for

a single pencil.

The three libraries studied below follow the same general pattern. Three sets of 1D FFTs

are performed along each axis with a transpose used to reorder data. In the case of Figure 3,

this means 1D FFT in the x-direction, transpose, y-direction, transpose, and then z-direction.

Depending on the application, a final transpose will be performed to restore the data. These

libraries differ in how the transpose is handled.

2.2.1 2DECOMPFFT

2DECOMPFFT [9] is designed for applications using 3-dimensional structured mesh and spa-

tially implicit numerical algorithms. It implements a general-purpose 2D pencil decomposition

for data distribution on distributed memory platforms. The transpositions are done using the

MPI “all-to-all” operator, but with a complex communication pattern according to the orien-

tation of pencils and their associated memory pattern.

2.2.2 p3dfft

The p3dfft algorithm [10] is an algorithm developed by Pekurovsky that uses a 2D pencil

decomposition with the objective of maximizing parallelism. p3dfft was written in Fortran and
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Figure 4: 3-Dimensional Decomposition of Data. Each one of the small cubes represent the

data held by each processor.

MPI and uses FFTW[12] as the underlying library for FFT. Communication operations are

done using MPI “all-to-all” operations.

Pekurovsky’s FFT3D requires a total of 3 transpositions to compute a transformation. Data

is redistributed during each step using call to MPI All-to-All that requires internal redistribution

of data. In each of the 3 communication steps, each processor transfers a block of size N3/P

with a bandwidth of Bw. Equation 2 summarizes these steps into a performance model.

T =
3N3

BwP
+ 3

N3 log(N)

kcP
+

3N3

kmP
+ 2ks(Py + Pz − 2) (2)

2.2.3 Ayala’s 2D Domain Decomposition

Ayala and Wang [11] built upon the work of Dmitruk et al. As with the other libraries, a 2D

Pencil Decomposition is used. Due to the target application of Direct Numerical Simulation,

the last transpose is not necessary in Ayala’s method.

As with Dmitruk’s work, the optimization of the transpose plays a large part in improving

performance. In this case, Ayala chose to follow Dmitruk’s cyclic strategy. This provides better

performance because during a transpose for a 2D Decomposition, only processors in the same

plane as the transpose need to communicate. For example, a transpose along the x and y axes

will only require communication between processors in the same xy plane to communicate.

Equation 3 presents a performance model taken from Ayala and Wang’s paper[11].

T =
4N3

BwP
+

15

2 log(2)

N3 log(N)

kcP
+

6N3

kmP
+ 2ks(Py + Pz − 2) (3)

2.3 3D Domain Decomposition: “Blocks”

Finally, we studied the 3D Domain Decomposition in which the data is broken up into blocks.

The P processors that participate in the computation are arranged in a 3-Dimensional grid so

that P = Px × Py × Pz. The amount of data held by each processor (Figure 4) is (N/Px) ×
(N/Py) × (N/Pz).
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2.3.1 3Decomp

3Decomp computes FFT3D by executing four data transpositions as shown in Figure 4. In

each case the communication is done using nonblocking point-to-point MPI calls. Due to the

differences in topology between each step, each processor needs to communicate with several

other processors. The local 1-Dimensional FFT transforms required are computed using the

FFTW[12] library.

The performance model of 3Decomp (Equation 4) is obtained by analyzing its data move-

ment and the amount of computation performed: Four communication steps are used where all

data held by each processor (N3/P in size) is reorganized locally and then sent to another pro-

cessor. Each processor, in parallel, computes 3N2/P one-dimensional FFTs, each of complexity

N log(N).

T =
4N3

BwP
+ 3

N3 log(N)

kcP
+

4N3

kmP
+ 2ks(2Px + Py(Px + Pz) − 4) (4)

3 A simplified model approach for FFT3D

Section 2 presented a selection of algorithms for FFT3D and their performance models.

Correctly developing and using performance models such as those presented in Equations

1, 2, 3 and 4 require a significant effort: It requires a reasonable understanding of the imple-

mentation, and it requires extensive testing on the machine to identify the constants of the

model.

Our previous experiments (Figure 1) showed a case where plotting execution time as a

function of the number of processors resulted in a straight line when plotted on a logarithmic

scale, indicating a power-function behavior. These results have motivated us to approximate

the performance models of FFT3D as a power function as presented in Equation 5.

TN (P ) = AN × P−BN (5)

Equation 5 is significantly simpler than other performance models, such as those presented

in Section 2, and it is appropriate to represent the behavior observed in Figure 1.

The power-function approximation is intended to provide estimates of parallelism for large

scale systems in a range of situations where there is enough parallelism available. i.e. Equation

5 will provide a reasonable approximation for a particular number of processors if the FFT3D

implementation is able to scale reasonably well up to that number of processors.

It is worth noting that our approximation doesn’t account for the startup latency of a mes-

sage. Thus, as P approaches N , the accuracy of our model may decrease. The following section

provides experiments that test our hypothesis and the usability of our simplified performance

model, even under these circumstances.
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4 Experiments

We conducted experiments to confirm the validity of our claims. Specifically, we wanted to

test whether or not the use of the power-law model of Equation 5 was sufficient to predict the

performance of particular implementations of FFT3D.

Our experiments were conducted on the Bluefire Supercomputer at the National Center for

Atmospheric Research (NCAR). The Bluefire supercomputer possesses 4096 Power6 processors

running at 4.7GHz and having 2GB of memory. Bluefire’s processors are connected by eight 4X

infiniband DDR links with a total bandwidth of 2.5GB/s. Further information about Bluefire’s

hardware can be obtained from NCAR’s website[13].

The experiments seek to establish whether or not it is possible to predict the performance of

FFT3D implementations using the model of Equation 5. As explained in Section 3, the power-

law model attempts to predict the performance of a particular implementation in common

situations.

To test our hypothesis, we have ran the implementations described in Section 2. In our

experiments, we chose several input sizes (N3 = 2563, N3 = 5123 and N3 = 10243) for FFT3D

that are typical of large-scale programs such as in cloud microphysics studies by direct nu-

merical simulations. For each implementation, we run each problem size while the number of

processors was changed. Due to memory, execution time, or processor count constraints, not

all combinations of problem sizes and processor counts were possible.

The results of our experiments are reported in Figures 5, 6 and 7. To confirm the validity

of our model, we have build simplified performance models for each implementation in the style

of Equation 5. For each case, the constants AN and BN found in Equation 5 have been found

using a least squares regression model.

The resulting models are presented in Table 2. The table shows the models as well as an

indication (R2 parameter) of how well the models are able to represent the experimental data

obtained (R2 = 1 means perfect match).

As can be seen from Figures 5, 6 and 7 and Table 2, the power function approximation

works remarkably well. In most situations, the R2 parameter is greater than 0.99, indicating

that the model was able to fit the data with a high degree of accuracy.

Figures 5, 6 and 7 also give an intuitive indication of the quality of our models: The predicted

models, represented with dashed lines, agree with the data gathered (plotted with solid lines).

The high level of similarity between the solid lines (measured) and dashed lines (model)

and the high value of the R2 indicator lead us to conclude that our model is an effective way

to predict the performance of FFT3D implementations in their normal operating range. This

is an important conclusion because the simple, power-function model can be quickly obtained

with as few as only two measurements, one at low processor counts, and one at high processor

counts. This is significantly simpler than the other models presented in Section 2 while still

presenting good accuracy.
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Figure 5: FFT3D performance for N3 = 2563. Solid lines show actual experimental data.

Dashed lines show a prediction using a power function.
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Figure 6: FFT3D performance for N3 = 5123. Solid lines show actual experimental data.

Dashed lines show a prediction using a power function.
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Figure 7: FFT3D performance for N3 = 10243. Solid lines show actual experimental data.

Dashed lines show a prediction using a power function.

Of particular interest was the issue of startup latency and congestion when the maximum

parallelism of a problem is approached. This is most evident for Dmitruk’s 1D Domain De-

composition when N = P . Figure 5 does show this limitation. However, as the problem size

is increased, the impact of the startup latency is greatly decreased, and our approximation’s

accuracy remains high.

The experimental information obtained here supports our hypothesis: A simplified perfor-

mance model for FFT3D is enough to make sufficiently accurate predictions when those predic-

tions pertain normal operating conditions. Our model has the advantage of being significantly

simpler while still being useful.

5 Summary and Conclusions

We demonstrated that a simplified performance model is enough to capture the behavior of

distributed-memory implementations of FFT3D in the particular case of large-scale systems.

We have targeted our efforts at predicting the performance of implementations under their

typical operating conditions. That is, when enough parallelism is available and the number of

processors used is reasonably large.

Preliminary results showed that the performance of FFT3D implementations followed a

power-function trend. Our full set of experiments, conducted on NCAR’s Bluefire supercom-
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Models for N3 = 2563

Implementation Function R2

Dmitruk-1D T256 = 0.550P−0.722 0.970

Ayala-2D T256 = 1.22P−0.996 0.999

2Decomp T256 = 1.658P−0.86 0.994

Takahashi 1D T256 = 1.095P−0.765 0.921

p3dfft 2D T256 = 1.373P−0.883 0.995

3Decomp-3D T256 = 6.268P−0.634 0.962

Models for N3 = 5123

Implementation Function R2

Dmitruk-1D T512 = 7.163P−0.817 0.998

Ayala-2D T512 = 11.683P−0.926 0.9998

2Decomp T512 = 17.118P−0.89 0.991

Takahashi 1D T512 = 8.066P−0.678 0.986

p3dfft 2D T512 = 11.203P−0.84 0.997

3Decomp-3D T512 = 111.63P−0.913 0.9832

Models for N3 = 10243

Implementation Function R2

Dmitruk-1D T1024 = 64.791P−0.843 0.996

Ayala-2D T1024 = 77.528P−0.812 0.995

2Decomp T1024 = 164.24P−0.907 0.997

Takahashi 1D T1024 = 53.839P−0.667 0.995

p3dfft 2D T1024 = 107.83P−0.853 0.997

3Decomp-3D T1024 = 2200.8P−1.074 0.998

Table 2: Power-function models for several FFT3D implementations

puter has shown that the use of a power function model is adequate to represent the performance

of FFT3D implementations on traditional distributed-memory machines.

The R2 indicator, which provides a quantitative way to measure the fidelity of an approx-

imation, shows, in all cases, a high degree of accuracy for our method. In most cases, the R2

indicator was greater than 0.99, further validating the effectiveness of our approach.

An important feature of the power function model is that obtaining it requires very little ex-

perimentation. The constants of the model can be obtained with as little as two measurements,

while still producing useful predictions.

Our current model has been designed to produce predictions related to the execution of

programs over data of a particular size. To study data of a different size, experiments must be

run to determine the adjusted constants.
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6 Future Work

There are several possible extensions to this work in progress. First, we are interested in

working on a more complex model that involves size and number of processors at the same

time. It will give robustness to the model proposed. Also the optimization of the FFT at node

level is of extremely importance for future many-core architectures in terms of overall high

performance. We are particular interested on fine grained task parallelism using light weighted

dynamic scheduling techniques and dynamic percolation techniques such as the proposed by

Garcia et al. [14, 15, 16].

Another interesting area is the implementation of FFT3D algorithms using novel fine-

grained, data-driven program execution models that pursue higher performance and better

programmability [17].

Finally, the use of Petri nets to model parallel algorithms with resource coordination con-

ditions have been proved to be useful in the development of new algorithms under parallel

architectures with different architectural features [18]. FFT3D is a good candidate to study us-

ing the architectural constrains of the NCAR’s Bluefire supercomputer and also the increasing

number of algorithmic approaches. Also, the use of high efficient and scalable parallel simu-

lators [19, 20, 21] can help us to understand the behavior of FFT3D. In addition, to model

energy consumption will be extremely important in order to evaluate the energy efficiency. We

are specially interested in a simple but accurate model such as the one proposed by Garcia et

al. [22].
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